Evaluating Modeled Intra- to Multidecadal Climate Variability Using Running Mann–Whitney Z Statistics
نویسندگان
چکیده
An analysis method previously used to detect observed intrato multidecadal (IMD) climate regimes was adapted to compare observed and modeled IMD climate variations. Pending the availability of the more appropriate phase 5 Coupled Model Intercomparison Project (CMIP-5) simulations, the method is demonstrated using CMIP-3 model simulations. Although the CMIP-3 experimental design will almost certainly prevent these model runs from reproducing features of historical IMD climate variability, these simulations allow for the demonstration of the method and illustrate how the models and observations disagree. This method samples a time series’s data rankings over moving time windows, converts those ranking sets to a Mann–Whitney U statistic, and then normalizes the U statistic into a Z statistic. By detecting optimally significant IMD ranking regimes of arbitrary onset and varying duration, this process generates time series of Z values that are an adaptively low-passed and normalized transformation of the original time series. Principal component (PC) analysis of the Z series derived from observed annual temperatures at 92 U.S. grid locations during 1919–2008 shows two dominant modes: a PC1 mode with cool temperatures before the late 1960s and warm temperatures after the mid-1980s, and a PC2 mode indicating a multidecadal temperature cycle over the Southeast. Using a graphic analysis of a Z error metric that compares modeled and observed Z series, the three CMIP-3 model simulations tested here are shown to reproduce the PC1 mode but not the PC2 mode. By providing a way to compare grid-level IMD climate response patterns in observed and modeled data, this method can play a useful diagnostic role in future model development and decadal climate forecasting.
منابع مشابه
Reproduction of twentieth century intradecadal to multidecadal surface temperature variability in radiatively forced coupled climate models
[1] Coupled Model Intercomparison Project 3 simulations that included time-varying radiative forcings were ranked according to their ability to consistently reproduce twentieth century intradecadal to multidecadal (IMD) surface temperature variability at the 5 by 5 spatial scale. IMD variability was identified using the running Mann-Whitney Z method. Model rankings were given context by compari...
متن کاملOn forced temperature changes, internal variability, and the AMO
We estimate the low-frequency internal variability of Northern Hemisphere (NH)mean temperature using observed temperature variations, which include both forced and internal variability components, and several alternative model simulations of the (natural + anthropogenic) forced component alone. We then generate an ensemble of alternative historical temperature histories based on the statistics ...
متن کاملA signature of persistent natural thermohaline circulation cycles in observed climate
[1] Analyses of global climate from measurements dating back to the nineteenth century show an ‘Atlantic Multidecadal Oscillation’ (AMO) as a leading large-scale pattern of multidecadal variability in surface temperature. Yet it is not possible to determine whether these fluctuations are genuinely oscillatory from the relatively short observational record alone. Using a 1400 year climate model ...
متن کاملLarge-Scale Temperature Patterns in Past Centuries: Implications for North American Climate Change
Recent climate reconstructions are analyzed specifically for insights into those patterns of climate variability in past centuries with greatest impact on the North American region. Regional variability, largely associated with the El Nino/Southern Oscillation (ENSO) phenomenon, the North Atlantic Oscillation (NAO), and multidecadal patterns of natural variability, are found to mask the emergen...
متن کاملClimate change. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures.
The recent slowdown in global warming has brought into question the reliability of climate model projections of future temperature change and has led to a vigorous debate over whether this slowdown is the result of naturally occurring, internal variability or forcing external to Earth's climate system. To address these issues, we applied a semi-empirical approach that combines climate observati...
متن کامل